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Framework for Characterizing the Performance of High-Early 
Strength, High-Volume Fly Ash (HVFA) Concrete Structures
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My Background

Assistant Professor of Civil Engineering
Director of the Concrete Materials & Structures Laboratory
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PhD in Structural Engineering
Lehigh University
2019
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Research Areas
 Behavior and mechanics of concrete structures
 Innovative precast & prestressed concrete components
 Innovative cementitious materials
 Experimental methods
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Highlights of IIT Concrete Materials & Structures Laboratory
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Highlights of IIT Concrete Materials & Structures Laboratory

MJ Gombeda - IIT
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Background and Motivation 
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Fly ash (FA), a coal combustion residual (CCR), is one of the most commonly 
used supplementary cementitious materials (SCMs).

FA particles carried out of coal combustion chamber by 
exhaust gases and subsequently filtered out

Two main classifications:
Class F  FA w/ pozzolan properties
Class C  FA w/ pozzolan & cementitious properties

Often used as a [partial] replacement of conventional 
Portland cement
 With restrictions for high-early strength concretes

 Initial Prestress
 Formwork Removal
 Rapid re-opening of structure
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High early strength development in FA concretes is typically limited by 
relatively lower heat of hydration

High early strength commonly achieved using Type III Portland cement
  Type III PC exhibits high heat of hydration

Mehta, PK, Monteiro, PJM. Concrete: Microstructure, Properties, and Materials, 3rd Edition, 2006, McGraw Hill



MJ Gombeda - IIT 8
Moghaddam, F., Sirivivatnanon, V., and Vessalas, K. “The effect of fly ash fineness on heat of hydration, microstructure, flow 
and compressive strength of blended cement pastes.” Case Studies in Construction Materials 10 (2019) e00218. Elsevier Ltd.

20% Fly ash content 40% Fly ash content

Increasing FA content for conventional mix designs usually leads to slower compressive strength gain
  Note the larger offset from the control ‘Cement’ mix curve with increasing FA content
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Can we continue to further advance sustainability initiatives without 
sacrificing pertinent fresh & hardened properties?

+ Especially critical for high-early strength mixes
  High replacements of OPC often result in low heats of hydration
   Generally results in lower early-age strengths

Why is today’s topic important? and innovative?

Push for more “sustainable concretes” is well known

Furthermore…

If we develop novel mix designs to meet such objectives, do we have a 
unified methodology to characterize their performance?

Are current methods or provisions still sufficient?
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Outline of Proposed Framework
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1)  Gather Concrete Performance Requirements

2)  HVFA Binder Optimization

3)  Assess the Environmental Impact of Using HVFA Concretes

4)  Scaling to HVFA Concrete Mix Designs

5)  Characterization of HVFA Concrete Strength Development

6) Facilitating Extrapolation from Ideal Laboratory Conditions to Relevant Environments

7) Assessing the Behavior/Performance of HVFA Concrete Structures

8) Expected Durability and Long-Term Performance

9)  Facilitating Updates/Revisions to Design Standards, Guidelines, etc.

}
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1) Gather Concrete Performance Requirements

Mechanical Performance

+ Early-age compressive strength
(initial prestress, bridge re-opening, etc.)

+ Early-age flexural strength
(lifting & handling, etc.)

Think like vectors  (magnitude and time!)

Workability

+ SCC ?
(if so, follow a few extra steps later on)

+ Slump retention
+ Desired set time

Environmental Impact

+ Limits on certain chemical contents
+ Leaching

+ Environmental life-cycle goals

Durability & Long-Term Performance

+ Air content
+ Formation Factor

+ Creep & Shrinkage
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2)  HVFA Binder Optimization
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2)  HVFA Binder OptimizationReactivity

+ Measure the heat release of novel 
SCMs in a calorimeter @ 40°C
(ASTM 1897-20)

+ In many ways, an important 
precursor to binder performance 
(and subsequently concrete strength 
development) characterization

https://www.humboldtmfg.com/digital-cement-calorimeter.html
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Development of Optimized HVFA Binders

Binary Binders
 HVFA & Type III Portland Cement w/ additional optimization

Ternary Binders
 HVFA, Type III Portland Cement, [additional material] (w/ additional optimization)

 Ex: CSA, slag, calcined clay, etc.

Ultimately evaluating mainly compressive strength and flow here

2)  HVFA Binder Optimization
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ASTM- C595: Standard Specification for Blended Hydraulic 
Cements determines the maximum sulfate reported as SO3 
as “4%” 

Material SO3 (XRF)
Type III 2.80%
Class F 2.20%
Class C 2.00%

Landfilled 0.46%
Gypsum 46.5%

Determine SO3 Content of Binder
ASTM - C563:  Standard Guide For Approximation of Optimum SO3 
in Hydraulic Cement

Mix SO3 Content 1 day 
strength 

F-G0 2.56% 2319
F-G1 2.92% 1276
F-G2 3.28% 954
F-G3 3.64% 967
F-G4 4.00% 865

Mix SO3 Content 1 day 
strength 

C-G0 2.48% 2017
C-G1 2.86% 4025
C-G2 3.24% 4200
C-G3 3.62% 4349
C-G4 4.00% 4455

Mix SO3 
Content

1 day 
strength 

L-G0 1.86% 4563
L-G1 2.40% 4670
L-G2 2.93% 4671
L-G3 3.47% 4131
L-G4 4.00% 3483

Class F  Class C  Landfilled 
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Accelerator [admixture] Optimization

 MAIN GOAL: Balancing cost and high-
early binder strength performance

Class F Class C Harvested F
Corrosion 
Inhibitor 

Accelerating 
Admixture

Calcium 
Bromide 

Strength/Hardening
Accelerator

Corrosion 
Inhibitor 

Accelerating
Admixture

Calcium
Bromide 

Strength/Hardening
Accelerator

Corrosion 
Inhibitor 

Accelerating 
Admixture

Calcium 
Bromide 

Strength/Hardening
Accelerator

Optimal %
(wt.) 1% 1% 1.50% 0.50% 0% 0% 0.50% 0% 1% 1% 1.50% 0.50%
24 hr.
Cube 

Strength
(psi)

4688 4167 5505 4446 4455 4455 5156 4455 5476 5269 5554 5134

2)  HVFA Binder Optimization
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3)  Assess the Environmental Impact of Using HVFA Concretes
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Environmental Life-Cycle Analyses

LCA analysis framework has been 
built to quantify the environmental 
impact of using HVFA concretes

https://sphere-project.eu/wp-content/uploads/sites/10/2021/01/Picture-2.png

The framework accounts for source 
of raw (or recycled) materials, 
transportation costs, end use of the 
concrete structure(s), etc.

Global warming potential (GWP) will also 
be quantified to aid precast producers in 
meeting sustainable construction 
requirements with HVFA mixes

3)  Assess the Environmental Impact of Using HVFA Concretes
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4)  Scaling to HVFA Concrete Mix Designs
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4)  Scaling to HVFA Concrete Mix DesignsOptimized Mix Proportioning

Optimization of the following:
1) Aggregate Packing
 + Power 0.35 or 0.45 curve [ACI 237R-07]
  may be used to improve workability
  & water demand for SCC mixes

2) Admixture Dosage
 + Admixtures need to be assessed/optimized
  again at concrete stage
 + Facilitate proper workability in the presence of larger aggregates
 + Maintain desired slump (or slump flow for SCC) and retention

3) w/c ratio
 + Shouldn’t be only reliance for enhanced strength
 + Enhances strength gain as long as workability is maintained
   Usually less of a problem for SCC mixes
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HVFA Concrete Batching 4)  Scaling to HVFA Concrete Mix Designs

MJ Gombeda - IIT
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4)  Scaling to HVFA Concrete M
ix Designs
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5)  Characterization of HVFA Concrete Strength Development

 Evaluate compressive and flexural strength at several 
 points during early-age period
  (e.g., within ~12-24 hours – don’t forget 28 days!)

 Specific metrics are a function of the corresponding project/application
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40% Fresh Class C FA – Example Cases
Mix Design

C40-SCC-030-B C40-G97-SCC-030-C C40-G97-CABR2-SCC-030-A C40-G97-ACC-SCC-030-A
Main Accelerators None (control) Optimized Gypsum Opt. Gyp. w/ CaBr2 Opt. Gyp. w/ non-Cl Liq. Accel.
Air Content (C231) 4.3% 6.8% 4.8% 5.5%

12-hour Compressive Strength 16-hour Compressive Strength
Average (psi) 1193.3 603 2903 3017

18-hour Compressive Strength 20-hour Compressive Strength
Average (psi) 2513.3 2750 3837 3700

24-hour Compressive Strength
Average (psi) 3750 3760 4317 4210

Mix Design
C40-SCC-030-B C40-G97-SCC-030-C C40-G97-CABR2-SCC-030-A C40-G97-ACC-SCC-030-A

Main Accelerators None (control) Optimized Gypsum Opt. Gyp. w/ CaBr2 Opt. Gyp. w/ non-Cl Liq. Accel.
12-hour Modulus of Rupture 16-hour Modulus of Rupture

Average (psi) 202.7 161 515 526
ACI 318 fr (psi) 259.1 184 404 412

18-hour Modulus of Rupture 20-hour Modulus of Rupture
Average (psi) 336.0 463 562 556

ACI 318 fr (psi) 376.0 393 465 456

24-hour Modulus of Rupture
Average (psi) 439.9 565 599 607

ACI 318 fr (psi) 459.3 460 493 487

Minimum Goal Here
3500 psi comp. strength

@ 24 hours
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Minimum Goal Here
3500 psi comp. strength

@ 24 hours

40% Fresh Class F FA – Example Cases
Mix Design

F40-FP20-SCC-030-A F40-CI-SCC-030-B3 F40-SH-S40C-SCC-030-H
Main Accelerators non-Cl Liq. Accel. calcium nitrite Accel. non-Cl Liq. SH Accel.
Air Content (C231) 5.8% 7.0% 9.0

16-hour Compressive Strength
Average (psi) 3023 3029 3613

20-hour Compressive Strength
Average (psi) 3613 3578 4157

24-hour Compressive Strength
Average (psi) 3978 3998 4360

Mix Design
F40-ACC-SCC-030-A F40-CI-SCC-030-B3 F40-SH-S40C-SCC-030-H

Main Accelerators non-Cl Liq. Accel. calcium nitrite Accel. non-Cl Liq. SH Accel.
16-hour Modulus of Rupture

Average (psi) 523 552 549
ACI 318 fr (psi) 412 413 451

20-hour Modulus of Rupture
Average (psi) 562 582 595

ACI 318 fr (psi) 451 449 484

24-hour Modulus of Rupture
Average (psi) 567 591 662

ACI 318 fr (psi) 473 474 495
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Minimum Goal Here
3500 psi comp. strength

@ 24 hoursMix Design
L40-SCC-030-A L40-G97-SH-SCC-030-A

Main Accelerators Optimized Gypsum Opt. Gyp. w/ non-Cl Liq. SH Accel.
Air Content (C231) 6.4% 7.5%

16-hour Compressive Strength
Average (psi) 2183 3147

20-hour Compressive Strength
Average (psi) 3003 3633

24-hour Compressive Strength
Average (psi) 3373 3977

Mix Design
L40-SCC-030-A L40-G97-SH-SCC-030-A

Main Accelerators Optimized Gypsum Opt. Gyp. w/ non-Cl Liq. SH Accel.
16-hour Modulus of Rupture

Average (psi) 414 499
ACI 318 fr (psi) 350 421

20-hour Modulus of Rupture
Average (psi) 470 524

ACI 318 fr (psi) 411 452

24-hour Modulus of Rupture
Average (psi) 548 561

ACI 318 fr (psi) 436 473

Slump flow test for an L40 mix.
High stability with no segregation was observed.

40% Harvested Class F FA – Example Cases
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Characterizing HVFA Early Strength Development – f’c
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Characterizing HVFA Early Strength Development – MOR
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6)  Facilitating Extrapolation from Ideal Laboratory Conditions to Relevant Environments
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6)  Facilitating Extrapolation from Ideal Laboratory Conditions to Relevant Environments
Maturity Method
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6)  Facilitating Extrapolation from Ideal Laboratory Conditions to Relevant Environments
Maturity Method cont…

y = 1.7678x3 - 105.78x2 + 2265.2x - 12975

y = 3264.7ln(x) - 5902
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7)  Assessing the Behavior/Performance of HVFA Concrete Structures

Examples of some critical early-age milestones:
 + Formwork Removal (precast or CIP)
 + Lifting/Handling (precast/tilt-up)
 + Initial Prestress (precast)
 + Rapid bridge deck construction or repairs

Main Objective: Confirmation of service or strength limit states for the structural member
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7)  Assessing the Behavior/Performance of HVFA Concrete Structures

Tests @ 12 hrs.
in this case
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7)  Assessing the Behavior/Performance of HVFA Concrete Structures

https://weckenmann.com/media/55705/img_0047.jpg?maxwidth=3200
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8) Expected Durability and Long-Term Performance

[SELECT] Pertinent Metrics:

[Standard] Air Content
  ASTM C231-22 (pressure method)
  Facilitates improved freeze-thaw durability
  Additionally enhances workability

Super Air Meter (SAM) Test
  Related to C231-22 test
  Measures air void spacing factor
   Better distribution of smaller aid voids generally facilitates enhanced durability

Creep under Compression
  ASTM C512-15
  Deflections under sustained dead load
  Necessary for comparing long-term HVFA concrete performance vs. standard mix designs

Formation Factor
  AASHTO TP119
  Measure of electrical resistivity to assess micro-structure (pore) for durability



MJ Gombeda - IIT 38

9)  Facilitating Updates/Revisions to Design Standards, Guidelines, etc.
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[Some] Future Research Needs

+ Characterization of other SCMs

+ Additional structural testing (prestressing, etc.)

+ More data with further reductions of Portland cement

+ Latest developments in concrete admixture technology

+ More investigation on slump/slump flow retention

+ Full-scale integration into precast production
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Questions ?
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Thank You!
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